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Abstract: On-chip optical communications are growingly aiming at multimode operation together with mode-division multiplex-
ing to further increase the transmission capacity.  Optical  switches,  which are capable of optical  signals switching at the nodes,
play a key role in optical networks. We demonstrate a 2 × 2 electro-optic Mach–Zehnder interferometer-based mode- and polar-
ization-selective  switch  fabricated  by  standard  complementary  metal–oxide–semiconductor  process.  An  electro  optic  tuner
based  on  a  PN-doped  junction  in  one  of  the  Mach–Zehnder  interferometer  arms  enables  dynamic  switching  in  11  ns.  For  all
the  channels,  the  overall  insertion  losses  and  inter-modal  crosstalk  values  are  below  9.03  and  –15.86  dB  at  1550  nm,  respect-
ively.
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1.  Introduction

Given the ever-increasing internet traffic,  scaling the per-
fiber  transmission  capacity  is  highly  desired[1].  Several  multi-
plexing  schemes,  including  wavelength-division  multiplexing
(WDM), polarization-division multiplexing (PDM), and mode-di-
vision multiplexing (MDM), are exploited to increase the com-
munication capacity.  Among them, MDM provides an attract-
ive option to further expand the transmission capacity by intro-
ducing multiple modes for each wavelength carrier[2, 3].

Silicon  optical  switches  based  on  a  silicon-on-insulator
platform offer the potential to enable high-speed optical net-
works  due  to  their  compatibility  with  a  commercial  comple-
mentary  metal–oxide–semiconductor  (CMOS)  process[4−6].
When leveraging multiple physical  dimensions,  a  two-dimen-
sional  or  three-dimensional  switch can be realized to achieve
scaled capacity.  An on-chip multimode optical  switch was re-
ported  based  on  quasi-phase-matching  and  a  staged  coup-
ling  method  with  the  capability  of  three-wavelength  and
two-mode  multiplexing[7].  Recently,  a  WDM-compatible  mul-
timode  optical  switch  working  for  three  wavelengths  and
two  modes  was  demonstrated[8].  A  silicon  wavelength  and
mode switch-and-selector  architecture with two wavelengths
and two modes was reported with improved flexibility  of  the
network[9].  In  contrast,  mode  and  polarization  dimensions
own the merit of multiplexing signals with one laser source. Re-
cently,  silicon  optical  switches  carrying  four-mode  and  two-
mode  dual-polarization  were  demonstrated  using  Mach–
Zehnder  interferometers  (MZIs),  respectively[10, 11].  To  further

scale the capacity, we presented a switch with three hybrid di-
mensions  including  mode,  polarization  and  wavelength[12].
However,  previous  multi-dimensional  switches  were  based
on  thermo-optic  tuning  with  a  slow  response  time  of  several
μs. Dynamic and high-speed multi-dimensional optical switch-
ing is highly desired.

In this paper, we report a 2 × 2 high-speed mode and po-
larization  switch-and-selector  architecture  (HMPSA)  based  on
MZI  switches  with  PN  junction-based  phase  shifters.  Com-
pared  to  thermo-optic  switches,  the  electro-optic  (EO)
HMPSA  exhibits  a  fast  switching  time  of  11  ns  benefitting
from  the  free-carrier  plasma  dispersion  effect.  Moreover,  the
numbers  of  the  MZIs  are  reduced  by  half  in  this  configura-
tion.  The  measured  overall  insertion  losses  (ILs)  are  below
9.03 dB. The inter-modal and intra-modal crosstalk (XT) of the
HMPSA  are  lower  than  –15.86  and  –7.32  dB  for  all  the  chan-
nels at 1550 nm, respectively. 

2.  Structure and design

The architecture  of  the silicon-integrated HMPSA for  two
modes  and  dual  polarizations  is  shown  in Fig.  1(a).  Similarly
to a wavelength switch-and-selector architecture,  the HMPSA
can  route  any  optical  signal  from  one  input  port  to  an  arbit-
rary output port.

The  proposed  switches  consist  of  mode  polarization
beam  splitters  (PBSs),  mode  multiplexers  (MMUXs),  polariza-
tion  rotators  (PRs)  and  crossings.  The  mode  multiplexers  are
based  on  asymmetric  directional  couplers  to  multiplex  the
TE1 and  TM1 modes[13].  The  crossings  are  implemented  by
90°-crossed multi-mode interferometer (MMIs)[14]. The polariza-
tion beam splitters and rotators are the building blocks of the
process  design  kit  (PDK)  from  Advanced  Micro  Foundry
(AMF)[15].  The  device  has  two  input  ports  (I1,  I2)  and  two  out-
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put ports (O1, O2). Firstly, the four mode- and polarization-mul-
tiplexed channels  with  TE0,  TE1,  TM0 and TM1 modes  from an
input  port  I1 or  I2 are  converted  to  the  fundamental  modes
by  the  corresponding  mode  de-multiplexers  (MDEMUXs)  and
the  PBSs.  After  rotating  the  TM  fundamental  mode  to  the  TE
fundamental  mode  by  PRs,  signals  are  switched  to  the  out-
put  waveguides  by  the  follow-on  MZI-based  EO  switches.
After the TM channels are recovered by the PRs, the switched
signals  are  multiplexed  by  the  MMUXs  and  the  polarization
beam  combiners  (PBCs)  and  finally  routed  to  output  port  O1

or O2.
Various  structures  have  been  used  as  MMUX,  such  as  Y-

splitters[16, 17],  MMI  coupler[18] and  asymmetrical  directional
couplers[19, 20].  Here  we  choose  asymmetric  directional
couplers  to  achieve  mode  (de-)multiplexing  for  their  better
compactness in  this  design.  As shown in Fig.  1(b),  the widths
of the waveguides carrying the two modes and dual polariza-
tion  are  chosen  to  be  0.4,  0.845,  0.4  and  1.045 μm,  respect-
ively.  We  use  10-μm-length  adiabatic  tapers  to  connect  the
multimode  waveguides  of  different  widths.  For  TE1 and  TM1

modes,  the  optimized  gaps  between  the  access  waveguides
and  the  multimode  waveguides  are  0.2  and  0.3 μm,  respect-
ively. The coupling lengths are designed as 18.5 and 8.25 μm,
respectively. The coupling between a few-mode fiber and a sil-
icon  multimode  waveguide  is  still  challenging[21−23].  Con-
sequently,  two  MMUX-As  and  two  MDEMUX-As  outside  the
2 × 2 HMPSA are used to couple high-order modes.

Fig.  1(c)  depicts  the schematic  configuration of  the 2 × 2
high-speed  MZI  switch.  A  2  ×  2  MMI  structure  is  used  as  the

3  dB  coupler  for  its  compact  size  and  broad-band  response.
One arm of  the  MZI  contains  an  EO phase  shifter  based on a
lateral  50-μm-long  p–n  diode  to  induce  the  π  phase  shift  for
high-speed switching operations. 

3.  Fabrication and results

The fabrication of the HMPSA chip is carried out by ultra-
violet  lithography  on  a  silicon-on-insulator  wafer  with  a  220-
nm-thick  silicon  layer  on  2 μm  buried  dioxide  layer  using
CMOS processes in AMF, Singapore. Fig. 2(a) shows the micro-
graph of the fabricated 2 × 2 HMPSA with a footprint of 2.2 ×
0.9  mm2. Fig.  2(b)–2(e)  depict  magnified  micrographs  of  a
PBS, a MMUX, a PR, a 2 × 2 high-speed MZI switch and wave-
guide crossings, respectively.

In the experiment setup,  a tunable light source (Keysight
81960A)  and  an  optical  power  meter  (Keysight  N7744A)  are
utilized  to  measure  the  spectral  responses  of  the  HMPSA.
Light  is  coupled  into  and  out  of  the  HMPSA  by  grating
couplers  with  a  shallow  etching  depth  of  70  nm  and  periods
of 630 and 980 nm for supporting TE and TM polarization, re-
spectively.  The  fiber-to-chip  coupling  losses  are  5.3  and  6.4
dB/facet at  1550 nm, respectively. Fig.  3 shows the measured
transmission spectra, which have been normalized by the grat-
ing  couplers  and  the  MMUX  on  the  same  chip. Table  1 sum-
marizes the ILs performance of the building blocks. Take the in-
put  port  I1 of  TE0 channel  as  an  example.  When  the  powers
supplied to the heater are 6.23 and 29.03 mW, the signals are
switched  to  output  port  O1 and  O2,  respectively.  By  tuning
the powers applied to the corresponding MZI switches, optic-

 

 

Fig. 1. (Color online) (a) Architecture of the proposed 2 × 2 HMPSA (The calculated mode patterns of the TE0, TE1, TM0 and TM1 modes are intens-
ity  profiles).  Structures of  (b)  MMUX and (c)  2  × 2 high-speed MZI  switch.  (d)  Cross-sectional  view of  the PN phase shifter.  (MMUX-A:  auxiliary
mode multiplexer; MDEMUX-A: auxiliary mode de-multiplexer.)
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al  signal  from  each  input  port  is  capable  of  being  routed  to
all  available output ports for all  the channels.  Here we manu-
ally adjusted the switching power to allow the maximum out-

put  optical  power,  while  it  is  possible  to  achieve  switch  con-
trol  and  calibration  with  built-in  power  monitors  and  a  feed-
back  loop[24, 25].  For  all  the  channels,  the  ILs  are  below  9.03
dB  at  1550  nm,  which  are  mainly  caused  by  the  manufactur-
ing imperfection, incomplete coupling in the MMUXs and the
PBSs.  The  ILs  can  be  reduced  by  using  dual-core  adiabatic
tapers[26] or higher silicon layer thickness[27] with improved fab-
rication  tolerance.  The  inter-modal  XT  performance  of  the
HMPSA is characterized by transmitting an optical signal from
a  defined  input  port  and  then  measuring  the  transmission
spectrum  at  all  output  ports  sequentially.  All  MZI  heating
powers  are  manually  adjusted to  enable  maximum output  at
the same port. For example, when we measure the inter-mod-
al XT from port I1-TE0 to port O2-TE1,  the MZI switches for the

 

 

Fig.  2.  (Color  online)  (a)  Micrograph of  a  silicon chip including a  HMPSA.  Magnified micrographs of  (b)  a  PBS and a  MMUX,  (c)  a  PR,  (d)  a  MZI
switch and (e) waveguide crossings.

 

 

Fig. 3. (Color online) Results of measured inter-modal crosstalk.

Table 1.   Measured insertion losses of the building blocks.

Item Loss

Grating coupler for TE0 5.3 dB/facet
Grating coupler for TM0 6.4 dB/facet
PBS for TE0 0.98 dB
PBS for TM0 1.04 dB
PR for TE0 0.91 dB
PR for TM0 0.78 dB
MMUX for TE0 1.61 dB
MMUX for TM0 1.32 dB
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port I1-TE0 and I1-TE1 are both set to output at the port O2.  As
shown  in Fig.  3,  the  measured  inter-modal  XT  values  of  the
fabricated device are lower than –15.86 dB at 1550 nm for all
the channels.

Fig.  4 shows the measured intra-modal  XT introduced by
the  high-speed  MZI  switches.  For  the  port  I1-TE0,  the  meas-
ured  intra-modal  XT  are  below  –10.13  dB  at  1550  nm.  For  all
the inputs, the overall intra-modal XT are lower than –7.32 dB
at  1550  nm.  The  relatively  large  crosstalk  introduces  signific-
ant,  but  tolerable,  impairments  for  a  quadrature  phase-shift
keying (QPSK) format by using an on-chip self-homodyne co-
herent  detection  scheme[28].  Further  intra-modal  XT  reduc-
tion can be realized via two MZI switches[29] or using the vari-
able coupler[30].

We  then  measure  the  dynamic  routing  performance  of
the  switch  by  applying  a  1  MHz  square-wave  voltage  signal
to  the  device.  The  peak-to-peak  drive  voltage  is  1.1  V  biased
at  a  direct  current  voltage  at  0.8  V. Fig.  5 shows  the  meas-
ured response for the switch. The measured 10%–90% switch-
ing time upon electrical tuning are 11 and 10 ns for the rising
and falling edges, respectively. 

4.  Conclusion

In  conclusion,  a  2  ×  2  HMPSA  is  experimentally  demon-

strated based on EO MZIs.  The ILs of the switch are 3.55–9.03
dB  at  1550  nm.  The  measured  inter-modal  and  intra-modal
XT values are better than –15.86 and –7.32 dB at 1550 nm, re-
spectively.  The  switching  time  (10%–90%)  for  the  rising  and
falling  edges  are  11  and  10  ns,  respectively.  The  demon-
strated  silicon  2  ×  2  HMPSA  has  promising  potential  for  fu-
ture high-speed optical  networks with switching time of  only
nanoseconds.  Furthermore,  this  scheme  can  be  extended  to
higher-order  modes  by  employing  cascaded  subwavelength-
grating-based directional couplers[31]. 

 

 

Fig. 4. (Color online) Results of measured intra-modal crosstalk.
 

Fig.  5.  (Color  online)  Measured  dynamic  response  of  the  switch.  Yel-
low  and  blue  curves  represent  the  applied  square-wave  voltage  sig-
nal and measured signal dynamic switching, respectively. The dotted
lines donate the 10% and 90% of the peak voltage.
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